LDA+U methods with different definitions of the occupation number operator [18] are available for both the collinear and non-collinear calculations by the following keyword 'scf.Hubbard.U':
scf.Hubbard.U on # On|Off, default=offIt is noted that the LDA+U methods can be applied to not only LDA but also GGA. The occupation number operator is specified by the following keyword 'scf.Hubbard.Occupation':
scf.Hubbard.Occupation dual # onsite|full|dual, default=dualAmong three occupation number operators, only the dual operator satisfies a sum rule that the trace of occupation number matrix gives the total number of electrons which is the most primitive conserved quantity in a Hubbard model. For the details of the operators onsite, full, and dual, see Ref. [18]. The effective U-value in eV on each orbital of species defined by
<Definition.of.Atomic.Species Ni Ni6.0S-s2p2d2 Ni_CA13S O O5.0-s2p2d1 O_CA13 Definition.of.Atomic.Species>is specified by
<Hubbard.U.values # eV Ni 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 4.0 2d 0.0 O 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.0 Hubbard.U.values>The beginning of the description must be 'Hubbard.U.values', and the last of the description must be 'Hubbard.U.values'. For all the basis orbitals, you have to give an effective U-value in eV in the above format. The '1s' and '2s' mean the first and second s-orbital, and the number behind '1s' is the effective U-value for the first s-orbital. The same rule is applied to p- and d-orbitals. As an example of the LDA+U calculation, the density of states for a nickel monoxide bulk is shown for cases with an effective U-value of 0 and 4 (eV) for d-orbitals of Ni in Fig. 29, where the input file is 'Crys-NiO.dat' in the directory 'work'. We see that the gap increases due to the introduction of a Hubbard term on the d-orbitals. The occupation number for each orbital is output to the file 'System.Name.out' in the same form as that of decomposed Mulliken populations which starts from the title 'Occupation Number in LDA+U' as follows:
*********************************************************** *********************************************************** Occupation Number in LDA+U and Constraint DFT Eigenvalues and eigenvectors for a matrix consisting of occupation numbers on each site *********************************************************** *********************************************************** 1 Ni spin= 0 Sum = 8.591857905308 1 2 3 4 5 6 7 8 Individual -0.0024 0.0026 0.0026 0.0038 0.0051 0.0051 0.0888 0.0950 s 0 0.1671 0.0005 -0.0006 0.0040 0.0000 0.0005 -0.0124 0.0000 s 1 -0.9856 -0.0030 0.0039 -0.0227 -0.0000 -0.0072 0.0066 0.0000 px 0 0.0010 0.0004 0.0011 -0.0131 0.0004 0.0001 -0.0261 -0.0291 py 0 0.0010 0.0006 -0.0008 -0.0130 0.0000 0.0009 -0.0271 -0.0000 pz 0 0.0010 -0.0012 -0.0001 -0.0131 -0.0004 0.0001 -0.0261 0.0291 px 1 0.0067 0.0023 0.0066 -0.0792 -0.0161 0.0123 0.5594 0.7062 py 1 0.0068 0.0041 -0.0053 -0.0801 -0.0000 -0.0162 0.5797 0.0002 pz 1 0.0067 -0.0070 -0.0005 -0.0792 0.0161 0.0123 0.5594 -0.7063 d3z^2-r^2 0 0.0002 -0.0781 -0.0105 0.0002 0.0023 0.0014 0.0002 0.0108 dx^2-y^2 0 0.0004 -0.0105 0.0781 0.0004 -0.0013 0.0024 0.0003 -0.0062 dxy 0 0.0004 -0.0009 -0.0002 0.0246 -0.0421 -0.0251 0.0794 -0.0050 dxz 0 -0.0001 0.0008 -0.0010 0.0269 0.0000 0.0478 0.0795 0.0000 dyz 0 0.0004 0.0004 0.0008 0.0246 0.0420 -0.0251 0.0794 0.0050 d3z^2-r^2 1 -0.0023 0.9875 0.1327 -0.0033 -0.0262 -0.0159 -0.0001 -0.0069 dx^2-y^2 1 -0.0040 0.1326 -0.9875 -0.0056 0.0151 -0.0275 -0.0002 0.0040 dxy 1 0.0091 0.0233 0.0052 -0.5578 0.7055 0.4249 -0.0749 0.0157 dxz 1 0.0189 -0.0180 0.0233 -0.5964 -0.0003 -0.7958 -0.0748 -0.0000 dyz 1 0.0091 -0.0110 -0.0212 -0.5578 -0.7052 0.4255 -0.0749 -0.0157 9 10 11 12 13 14 15 16 Individual 0.0952 0.2456 0.9902 0.9974 0.9975 1.0060 1.0060 1.0137 s 0 0.0002 0.9859 -0.0036 -0.0001 0.0000 -0.0000 0.0000 -0.0000 ..... ...
For collinear cases <Atoms.SpeciesAndCoordinates # Unit=AU 1 Ni 0.0 0.0 0.0 10.0 6.0 on 2 Ni 3.94955 3.94955 0.0 6.0 10.0 on 3 O 3.94955 0.0 0.0 3.0 3.0 on 4 O 3.94955 3.94955 3.94955 3.0 3.0 on Atoms.SpeciesAndCoordinates> For non-collinear cases <Atoms.SpeciesAndCoordinates # Unit=AU 1 Ni 0.0 0.0 0.0 10.0 6.0 40.0 10.0 0 on 2 Ni 3.94955 3.94955 0.0 6.0 10.0 40.0 10.0 0 on 3 O 3.94955 0.0 0.0 3.0 3.0 10.0 40.0 0 on 4 O 3.94955 3.94955 3.94955 3.0 3.0 10.0 40.0 0 on Atoms.SpeciesAndCoordinates>