It is possible to perform the variable cell optimization under an applied pressure.
This is done by minimizing the enthalpy defined with
(1) |
MD.applied.pressure 10.0 # in GPa, default=0The positive pressure corresponds to the compression of cell. The functionality is compatible with 'OptC1', 'OptC2', 'OptC3', 'OptC4', 'OptC5', 'OptC6', 'OptC7', and 'RFC5', 'RFC6', and 'RFC7' which can be specified by the keyword 'MD.Type'. As an example, one can perform the enthalpy optimization using an input file 'Si8-pV.dat' stored in the directory 'work', which is for the optimization of Si crystal under 10 GPa. After the calculation, you may find the history of the optimization in the out file 'si8-pV.out' as follows:
*********************************************************** History of cell optimization *********************************************************** *********************************************************** MD_iter SD_scaling |Maximum force| Maximum step Utot Enpy Volume (Hartree/Bohr) (Ang) (Hartree) (Hartree) (Ang^3) 1 1.25981732 0.07663140 0.05108760 -32.84057849 -32.47335956 160.10300700 2 1.25981732 0.06717954 0.04478636 -32.84541333 -32.48138995 158.70978745 3 1.25981732 0.05879663 0.03919775 -32.84853574 -32.48736913 157.46427382 4 1.25981732 0.05131728 0.03421152 -32.85047522 -32.49182806 156.36581813 5 3.14954331 0.04468030 0.07446716 -32.85159836 -32.49515060 155.40690918 6 3.14954331 0.02956430 0.04927383 -32.85232293 -32.50062291 153.33695214 7 3.14954331 0.01960389 0.03267316 -32.85158714 -32.50293764 152.00696345 8 3.14954331 0.01318467 0.02197446 -32.85069024 -32.50392104 151.18717226 9 7.87385828 0.00909382 0.03789092 -32.84998761 -32.50434789 150.69473500 10 7.87385828 0.00253118 0.00537839 -32.84867882 -32.50470324 149.96919000 11 7.87385828 0.00198428 0.03321825 -32.84877730 -32.50477155 149.98234416 12 7.87385828 0.00271856 0.01866538 -32.84922787 -32.50499775 150.08016284 13 7.87385828 0.00086782 0.00943670 -32.84942256 -32.50507226 150.13256385 14 7.87385828 0.00077020 0.00982293 -32.84949585 -32.50509162 150.15607426 15 7.87385828 0.00020223 0.00270074 -32.84950610 -32.50511244 150.15146767 16 7.87385828 0.00005544 0.00000000 -32.84950546 -32.50511390 150.15055140
Also, one can apply the pressure to only designated axes in orthorhombic crystal systems by the following keyword:
MD.applied.pressure.flag 1 1 1 # default=1 1 1The default setting is '1 1 1' which means that the isotropic pressure is equally applied along the a-, b-, and c-axes. When you specify the keyword as '1 0 0', the pressure is applied along only the a-axis which is the direction perpendicular to the bc-plane in orthorhombic crystal systems. The functionality is valid for orthorhombic crystal systems, and in this case you need to provide the unit vectors such as
<Atoms.UnitVectors 10.000 0.000 0.000 0.000 8.000 0.000 0.000 0.000 11.000 Atoms.UnitVectors>so that the non-zero elements can be diagonal. Apart from the orthorhombic crystal systems, one may apply the anisotropic pressure along an lattice vector perpendicular to the plane defined by the other lattice vectors. The case can be found in cases such as hexagonal crystal systems, and you may specifiy these keywords as follows
MD.applied.pressure.flag 0 0 1 # default=1 1 1
<Atoms.UnitVectors 6.000 0.000 0.000 -3.000 5.196 0.000 0.000 0.000 10.000 Atoms.UnitVectors>