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A noniterative method is presented to calculate the closest Wannier functions (CWFs) to a given set of
localized guiding functions, such as atomic orbitals, hybrid atomic orbitals, and molecular orbitals, based
on minimization of a distance measure function. It is shown that the minimization is directly achieved by
a polar decomposition of a projection matrix via singular value decomposition, making iterative calculations
and complications arising from the choice of the gauge irrelevant. The disentanglement of bands is inherently
addressed by introducing a smoothly varying window function and a greater number of Bloch functions, even
for isolated bands. In addition to atomic and hybrid atomic orbitals, we introduce embedded molecular orbitals
in molecules and bulks as the guiding functions, and demonstrate that the Wannier interpolated bands accurately
reproduce the targeted conventional bands of a wide variety of systems including Si, Cu, the TTF-TCNQ
molecular crystal, and a topological insulator of Bi2Se3. We further show the usefulness of the proposed method
for calculating effective atomic charges. These numerical results not only establish our proposed method as an
efficient alternative for calculating WFs, but also suggest that the concept of CWF can serve as a foundation for
developing novel methods to analyze electronic structures and calculate physical properties.
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I. INTRODUCTION

Wannier functions (WFs) [1–3] play a central role in an-
alyzing electronic structures of real materials and advancing
electronic structure methods along with density functional
theory (DFT) [4] and the other electronic structure theo-
ries [5,6]. A widely adopted method for calculating WFs
involves maximizing their localization, which can be refor-
mulated as minimizing the spread function characterizing the
variance of the WFs in real space [7,8]. The concept of max-
imal localization leads to an elegant formulation, resulting
in maximally localized Wannier functions (MLWFs), and the
following compact representation of the Hamiltonian allows
us to analyze the electronic structures of real materials using
a localized orbital picture. However, it is also recognized that
the minimization of the spread function often encounters local
minima, particularly in large-scale systems with complicated
electronic structures [3]. To overcome this challenge, meth-
ods aimed at automated high-throughput Wannierization have
been developed [9–11]. In addition, other methods for gen-
erating (nonorthogonal) WFs have been proposed based on
projection methods [12–14], which produce compact atomic
like orbitals. The orthogonalization of such nonorthogonal
orbitals obtained by the projection can be achieved using the
Löwdin orthogonalization procedure [15,16]. These orthog-
onalized orbitals are utilized as an initial guess of the WFs
in the minimization of the spread function to obtain MLWFs
[7,17]. Apart from the role of the initial guess, it is worth
noting that the Löwdin orthogonalized orbitals possess an im-
portant variational property, which in particular minimizes the
sum of the squared distances between the orthogonal and orig-
inal nonorthogonal orbitals in the Hilbert space [18]. As long
as the original nonorthogonal orbitals are localized, the local-
ization of the Löwdin orthogonalized orbitals in real space is

guaranteed in a sense of minimization of the distance. In quan-
tum chemistry, this property is leveraged to develop methods
for generating localized orthogonal orbitals. These methods,
which include the natural atomic and bond orbital method
[19] and the intrinsic atomic orbital method (IAO) [20], in-
volve obtaining orthogonalized orbitals through Löwdin type
orthogonalization, giving heavy weight to occupied states via
the density matrix. On the other hand, in solid state physics,
the variational property inherent in the Löwdin orthogonal-
ization has not yet been fully explored. This is because the
Löwdin orthogonalization requires the calculation of S−1/2

for the overlap matrix S, which causes numerical instability
for nearly ill-conditioned matrices. Owing to this difficulty,
advancements in methodologies along these lines appear to
be slow. It should be mentioned that avoiding the calculation
of S−1/2 has already been proposed based on singular value
decomposition (SVD) to calculate an initial guess of WFs
for the maximal localization [8]. However, the relationship
between the WFs obtained through this procedure and the
variational principle has not been sufficiently discussed so far.

Our study aims to develop an efficient and robust method
for generating the closest Wannier functions (CWFs) to a
given set of localized guiding functions, based on a varia-
tional principle and polar decomposition of the projection
matrix. We will demonstrate that exploiting the variational
property leads to a versatile method that eliminates the need
for iterative optimization and avoids complications related to
the gauge choice. The projection method based on the polar
decomposition has already been employed as a workaround
[21,22] with successful applications [23,24]. However, to the
best of our knowledge, no study has thoroughly discussed
the mathematical and physical significance of this method
based on the closest principle. Our study establishes the the-
oretical foundation by formulating the closest principle as a
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variational problem, and clarifies the relationship between the
Löwdin orthogonalization and the polar decomposition. We
will also introduce a smoothly varying window function that
enables us to flexibly control targeted states to be Wannierized
in a similar way to that proposed in Ref. [10]. The present
study offers a more rigorous justification for these practices.
With the theoretical advancement, the concept of CWF can
serve as a foundation for developing novel methods to an-
alyze electronic structures and calculate physical properties
as exemplified in the analysis of effective atomic charges in
Sec. IV.

The structure of this paper is as follows: In Sec. II, we
present the theory for calculating CWFs. Section III provides
a detailed discussion on the implementation of the method.
A series of benchmark calculations are presented in Sec. IV.
Finally, in Sec. V, we summarize the theory of CWFs and sug-
gest the potential role of CWFs as a foundation for developing
novel methods.

II. THEORY

Let us start by introducing Bloch functions {φ}, which can
be obtained by solving the Kohn-Sham (KS) equation [25]
within the DFT [4], normalized as

〈φk1μ|φk2ν〉 = NBCδk1k2δμν, (1)

where k and μ are the k vector and band index, respectively,
and NBC is the number of primitive cells in the Born-von
Karman boundary condition. We consider the projection of
a localized guiding function Q onto the Bloch functions {φ}
weighted with a window function w(ε) as

|LRp〉 = 1

NBC

∑
kμ

e−ik·R|φkμ〉akμ,p (2)

with

akμ,p = w(εkμ)〈φkμ|Q0p〉, (3)

where R and p are the translational lattice vector and index of
the localized orbital, respectively, εkμ is the eigenvalue of the
KS equation, and Q0p ≡ QRp (R = 0). In the summation of
Eq. (2), the numbers of k points and the Bloch functions to be
included per k point are NBC and Nband, respectively. Through-
out this paper, we do not consider the spin dependency on the
formulation for the sake of simplicity, but the generalization
is straightforward. The localized functions {QRp}, such as
atomic orbitals, hybrid orbitals, or molecular orbitals (MOs),
are assumed to localize in the unit cell specified by R. When
the window function w(ε) is taken to be unity, Eq. (2) is
nothing but an expansion of QRp with Bloch functions from
the identity relation 1

NBC

∑
kμ |φkμ〉〈φkμ| = Î . To introduce an

expansion of QRp by the Bloch functions {φkμ} in a subspace,
we use the following window function w(ε):

w(ε) = 1 − exp(x0 + x1)

(1 + exp(x0))(1 + exp(x1))
+ δ (4)

with the definition of x0 ≡ β(ε0 − ε) and x1 ≡ β(ε − ε1),
where β = 1

kBT with the Boltzmann constant of kB and a
temperature of T . The window function of Eq. (4) is obtained
by subtracting 1 from the sum of the two functions of 1/(1 +
exp(x)). It is also possible to introduce two temperatures T0
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FIG. 1. Window functions of Eq. (4) with kBT = 0.1, 1.0, and
3.0 eV. ε0 and ε1 were set to be −5.0 and 5.0 eV, respectively, and
δ = 10−12 was used.

and T1. The usefulness of the two temperature scheme will be
demonstrated for the case of GaAs in Sec. IV. The last term δ

in Eq. (4) is a small constant, e.g., 10−12, which is introduced
to avoid the ill conditioning of the matrix consisting of akμ,p

by Eq. (3) as will be discussed later. As shown in Fig. 1,
the parameters of ε0 and ε1 (ε0 < ε1) determine the energy
range where the Bloch states are included in the expansion of
Eq. (2) with a large weight, and the temperature T provides the
degree of smearing around ε0 and ε1 in w(ε). To control the
degree of smearing, we introduce the temperature of T so that
one can intuitively understand the degree of smearing. It
should be noted that the choice of the window function by
Eq. (4) is not unique, and the other choices should give almost
equivalent results as long as they are chosen properly. One
may also consider that the window function has no special
advantages over the outer and inner window scheme [8] and
merely functions in a similar manner. However, the window
function defined by Eq. (4) exhibits superior performance
in the disentanglement of bands and calculation of effec-
tive charges. The advantages will be clearly demonstrated in
Secs. IV A and IV B, respectively.

The function LRp defined by Eq. (2) must be similar to the
localized function QRp, but they are generally nonorthogonal
to each other. We now consider generating a set of CWFs
{WRp} to a set of localized functions {LRp} in the sense that the
sum of the squared distance between L and W in the Hilbert
space is minimized. As well as Eq. (2), noting that the CWFs
can be expressed [3] as

|WRp〉 = 1

NBC

∑
kμ

e−ik·R|φkμ〉bkμ,p, (5)

and defining the residual function R:

|RRp〉 = |LRp〉 − |WRp〉, (6)

the distance measure (DM) function F we minimize is
given by

F [B] =
∑

p

〈R0p|R0p〉,= 1

NBC

∑
k

X [B, k] (7)
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with

X [B, k] = tr[(A†(k) − B†(k))(A(k) − B(k))], (8)

where the elements of the matrices A(k) and B(k) are given
by akμ,p and bkμ,p, respectively. The second line of Eq. (7)
is obtained by considering the orthonormality of Eq. (1), and
X [B, k] of Eq. (8) is regarded as the squared Frobenius norm
of (A(k) − B(k)) [26]. The same Bloch functions as in Eq. (2)
are included in the summation of Eq. (5). The number of
CWFs to be generated is NCWF per unit cell, being equivalent
to the number of the guiding functions per cell, and NCWF

should be smaller than or equal to Nband to guarantee the linear
independency of the subspace spanned by the CWFs, result-
ing in size of Nband × NCWF for the matrices A(k) and B(k).
Assuming B†(k)B(k) = I , where I is of size NCWF × NCWF,
the CWFs are ensured to form a set of orthonormal functions.
Under this constraint, we consider the optimization of the DM
function F . Furthermore, the matrix B(k) is regarded as a part
of a unitary matrix of size Nband × Nband, and will be referred
to as a partial unitary matrix in subsequent discussions.

The minimum of the DM function of Eq. (7) is obtained
by choosing B(k) as U (k) which is calculated by the polar
decomposition of A(k) = U (k)P(k), where U (k) and P(k)
are unitary and Hermitian, respectively [27]. Let us prove the
statement below. The polar decomposition of A(k) is obtained
via SVD of A(k) as

A = W �V † = WV †V �V † = UP, (9)

where we dropped the dependency on k for simplicity of
the notation, and hereafter we will denote the dependency if
necessary. W and V are the left and right singular matrices in
size of Nband × NCWF and NCWF × NCWF, respectively, and �

is the singular value diagonal matrix in size of NCWF × NCWF.
Note that U ≡ WV † and P ≡ V �V †. It is worth mentioning
that W and U are partial unitary matrices, and hold W †W = I
(WW † �= I) and U †U = I (UU † �= I), and that V is a full
unitary matrix holding V †V = I (VV † = I). We evaluate X
of Eq. (8) for each k with both the matrix U obtained by the
polar decomposition and an arbitrary partial unitary matrix B,
and calculate the difference as

X [U ] − X [B] = 2tr

[
1

2

(
A†B + B†A

) − P

]
,

= 2tr[�D − �],

= 2
∑

n

σn(dnn − 1) (10)

with

D = 1
2 (V †U †BV + V †B†UV ). (11)

The second line of Eq. (10) is derived by using the polar
decomposition of A and P = V �V †, and σn and dnn in the
third line are diagonal elements of � and D, respectively. The
upper bound of the diagonal elements of the Hermitian matrix
D is found to be unity, since the matrix D consists of the sum
of the product of partial unitary matrices of V †U † (V †B†) and
BV (UV ). Another proof for the upper bound is also given
based on the Cauchy-Schwarz inequality in the Appendix. By
considering the upper bound of the diagonal elements of D
and 0 � σn, the third line of Eq. (10) leads to the following

inequality:

X [U ] � X [B]. (12)

The equality of Eq. (12) holds if B = U . If some of σn is
zero, then the corresponding dnn in Eq. (10) can be arbitrarily
chosen. So, we see from Eq. (11) that U is not uniquely
determined. If all the singular values of σn are positive, then all
the dnns should be unity when X [U ] = X [B]. The uniqueness
of the solution can be confirmed as follows: Since the matrix
D consists of the products of the partial unitary matrices as
discussed above, the case that all the diagonal elements dnn

are unity happens when

U †B + B†U = 2I, (13)

which is derived by equating D = I and multiplying V and
V † from the left and right of the equation, respectively. By
noting again that B and U in Eq. (13) are the partial unitary
matrices, it is found that Eq. (13) holds if and only if B = U .
Thus, we have proven the statement that the minimum of
the DM function of Eq. (7) is uniquely determined when
B = U as long as all the singular values of σn are positive,
since F [B] of Eq. (7) consists of the sum of X [B, k] over
k. The uniqueness of U itself is related to that of the SVD
for the matrix A of Eq. (3). If A has NCWF positive singular
values which are nondegenerate, then the SVD is uniquely
determined except for the nonunique phases in W and V .
Even if there are degenerate singular values, the matrix U
is invariant, since the freedom of the unitary transformation
K for the degenerate left and right singular vectors is can-
celed out as U = W KK†V † = WV † with KK† = I . Further,
noting that the nonunique phases in W and V are canceled
out when the matrix U is computed as WV †, we conclude
that U is uniquely determined if A has the NCWF positive
singular values. The violation from the positive definiteness
of the singular values can be avoided by the small constant of
δ in Eq. (4). On the other hand, if δ in Eq. (4) is set to be 0
and a narrow window, including fewer than NCWF eigenstates
for a given k, and is used with a small kBT , then the matrix
A has NPSV positive singular values, where NPSV < NCWF.
In this case, a subspace of the (NCWF − NPSV) dimension is
arbitrary chosen to form W and V of the dimension of NCWF

in addition to the subspace of the NPSV dimension, which
breaks the symmetry of CWFs. The symmetry breaking is due
to the nonuniqueness of the SVD when some of the singular
values are zero. The situation can be avoided by introducing
a small constant δ in the window function of Eq. (4). The
simple treatment restores the symmetry of CWFs, allowing
us to calculate symmetry preserving CWFs for a wide variety
of choices in the energy range of the window function. It is
also noted that the nonunique phase of the Bloch functions is
canceled out via the polar decomposition of A and Eq. (5). We
have the arbitrariness of phase both in calculating the Bloch
functions and singular vectors W and V , and unitary freedom
K for W and V when singular values are degenerate. However,
they are all canceled out as discussed above. Thus, we see that
the proposed method is free from complications arising from
the choice of gauge.
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Using Eqs. (8) and (9), the minimum of the DM function
F at B = U is given by

F [U ] = 1

NBC

∑
kp

(σkp − 1)2, (14)

where σkp is a singular value of the matrix A(k). From
Eq. (14), we find that the mean squared distance between L
and W is related to the deviation of σ from unity.

The proposed method based on the polar decomposition of
A is closely related to the Löwdin orthogonalization [15] as
shown below. The Fourier transform of the overlap integrals
for {L} is given by

∑
R

eik·R〈L0p|LRq〉 =
∑

μ

a∗
kμ,pakμ,q, (15)

which is obtained by noting that 1
NBC

∑
R ei(k−k′ )·R = δkk′ . By

writing Eq. (15) as S(k) = A†(k)A(k) in a matrix form, and
using Eq. (9), we have the following relation:

S(k) = A†(k)A(k) = V †(k)�2(k)V (k). (16)

Comparing Eq. (16) with P(k) = V (k)�(k)V †(k), one ob-
tains a relation P(k) = S1/2(k). If P(k) is invertible, then the
matrix U (k) is given with Eq. (9) by

U (k) = A(k)S−1/2(k). (17)

The matrix U obtained by Eq. (17) is exactly equivalent to
that by the Löwdin orthogonalization [15], and the closest
property of the Löwdin orthogonalized orbitals to a given set
of orbitals was proven in Ref. [18]. On the other hand, the
proposed method does not require the calculation of S−1/2,
and can be applied in a numerical stable manner even to the
case that the matrix A is nearly ill conditioned. The defini-
tion of A by Eq. (3) with the window function allows us to
calculate CWFs in various respects, e.g., heavily weighting to
occupied states and disentangling of localized states embed-
ded in the wider bands as demonstrated in Sec. IV. In this
sense, the method we propose can be regarded as a general-
ization of the Löwdin orthogonalization. We also notice that
the projection method in Ref. [8] is equivalent to the proposed
method in the sense that U in Eq. (17) is calculated via the
polar decomposition, and that the WFs obtained through the
procedure [8] can be regarded as CWFs under the constraints
of how the matrix A is constructed.

The disentanglement of bands can be easily performed by
properly selecting the window function of Eq. (3). Since the
Nband(� NCWF) Bloch functions per k point are included in
Eqs. (2) and (5), it should be emphasized that the proposed
method always disentangles Nband states to generate NCWF

Wannier functions. A couple of examples will be shown in
Sec. IV, including valence and low-lying conduction bands for
the diamond Si and narrow 3d bands embedded in the wider
4s band for the face-centered cubic (fcc) Cu.

Once the k-dependent U (k) are obtained by the polar de-
composition, tight-binding (TB) parameters are calculated as
expectation values of the KS Hamiltonian ĤKS by summing

contributions over k and μ as

t0p,Rq = 〈W0p|ĤKS|WRq〉,

= 1

NBC

∑
kμ

εkμu∗
kμ,pukμ,qe−ik·R, (18)

where ukμ,q is the matrix element of U (k). Like with MLWFs,
the TB parameters can be used for the Wannier interpolation
in calculations of band structures and physical quantities.

The computational procedure to generate the CWFs is
summarized as follows:

(1) Determining ε0, ε1, and kBT in Eq. (4) by checking
the band dispersion of a system of interest. The parameters
should be chosen properly so that the targeted eigenstates can
be included.

(2) Choosing a set of localized orbitals {Q}. Atomic or-
bitals, hybrid orbitals, and MOs might be possible choices.
Depending on the symmetry of the targeted eigenstates, a
proper set of localized orbitals needs to be chosen, e.g., d
orbitals need to be employed in the generation of CWFs for
the d bands in fcc Cu as shown later on.

(3) Calculation of A(k) by Eq. (3). The calculation of the
overlap 〈φkμ|Q0p〉 depends on the implementation of the KS
method.

(4) Performing the SVD of A(k). A proper numerical li-
brary might be used.

(5) Calculation of U (k). Using the left and right singular
matrices, W (k) and V (k), of A(k), U (k) is calculated as
W (k)V †(k).

(6) Calculations of the CWFs and TB parameters. The
CWFs can be calculated using Eq. (5) with B = U obtained
by the step 5. The calculation is expressed by the sum of the
matrix-matrix product over k. Also, the TB parameters are
obtained by Eq. (18).

It should be stressed that the minimization of F can
be efficiently performed in a noniterative manner by the
steps 1 to 6 using the polar decomposition via the SVD.
The computational cost of each step is estimated to be
O(NBCNbandNCWFNbasis ), O(NBCN3

band ), O(NBCNbandN2
CWF), or

O(NBCNbandNCWFNbasis ) for the step 3, 4, 5, or 6, respectively,
where Nbasis is the number of basis functions to expand the
KS orbitals. If the localized basis functions are used, then the
computational cost of the step 3 becomes O(NBCNbandNCWF).

For isolated systems, the Brillouin zone sampling is limited
to only the 	 point. No modification of the proposed method
is needed to calculate the CWFs.

The theoretical framework we have discussed so far is gen-
eral for any implementation of the DFT-KS method. However,
the choice of the the localized functions {Q} in Eq. (3) may
depend on the implementation. So, we will discuss how the
localized functions {Q} can be properly generated in Sec. III.

III. IMPLEMENTATION

A. General

We have implemented the proposed method into the
OpenMX DFT software package [28–30] which is based
on norm-conserving pseudopotentials (PPs) [31,32] and op-
timized pseudoatomic orbitals (PAOs) [33,34] as basis set.
All the benchmark calculations were performed with a
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TABLE I. Basis functions and valence states included in PPs.
∗For the calculations of atomic charges, the basis functions listed in
Table III were used.

Element Basis functions Valence states in PP

H ∗H7.0-s2p2d1 1s
C ∗C6.0-s3p2d2 2s, 2p
N ∗N6.0-s3p2d2 2s, 2p
Na ∗Na9.0-s3p3d2f2 2s, 2p, 3s
Si Si7.0-s2p2d2f1 3s, 3p
Cl ∗Cl9.0-s3p3d2f2 3s, 3p
S S7.0-s3p2d2f1 3s, 3p
Cu Cu6.0-s3p3d3f1 3s, 3p, 3d , 4s
Ga Ga7.0-s3p2d2f1 3d , 4s, 4p
As As7.0-s3p2d2f1 3d , 4s, 4p
Se Se7.0-s3p2d2 4s, 4p
Bi Bi8.0-s3p2d2f1 5d , 6s, 6p

computational condition of a production level. The basis func-
tions used are listed in Table I. In the abbreviation of basis
functions such as H7.0-s2p2d1, H stands for the atomic sym-
bol, 7.0 the cutoff radius (Bohr) in the generation by the
confinement scheme [33,34], and s2p2d1 means the employ-
ment of two, two, and one optimized radial functions for
the s, p, and d orbitals, respectively. The radial functions
were optimized by a variational optimization method [33].
These basis functions we used can be regarded as at least
double zeta plus double polarization basis sets if we follow
the terminology of Gaussian or Slater-type basis functions.
Valence states included in the PPs are listed in Table I. All
the PPs and PAOs we used in the study were taken from the
database (2019) in the OpenMX website [28], which were
benchmarked by the delta gauge method [35]. Real space grid
techniques were used for the numerical integrations and the
solution of the Poisson equation using fast Fourier transform
with the energy cutoff of 250 to 500 Ryd [29]. We used
a generalized gradient approximation proposed by Perdew,
Burke, and Ernzerhof to the exchange-correlation functional
[36]. An electronic temperature of 300 K was used to count
the number of electrons by the Fermi-Dirac function for all
the systems we considered. For all the calculations, δ = 10−12

was used in the window function of Eq. (4), and Nband was set
to be equivalent to the number of basis functions in both the
summation of Eqs. (2) and (5).

B. Choice of guiding functions {Q}
Depending on the targeted eigenstates in the window func-

tion of Eq. (4), one can choose either atomic orbitals, hybrid
atomic orbitals, or MOs as the guiding functions {Q} in
Eq. (3). In this subsection we discuss the three kinds of the
localized guiding functions {Q}, i.e., atomic orbitals, hybrid
atomic orbitals, and embedded MOs in molecules and bulks,
and how they can be generated in our implementation.

In our implementation, the Bloch function φkμ is expanded
by PAOs χ [33,34] as

|φkμ〉 =
∑

R

eik·R ∑
iα

ckμ,iα|χRiα〉, (19)

where i and α are atomic and orbital indices, and c is a linear
combination of PAO coefficient. Also note that 〈r|χRiα〉 ≡
χiα (r − τi − R), where τi is the position of atom i. We use
PAOs as the guiding functions {Q} of atomic orbitals, cor-
responding to valence orbitals or specific orbitals such as
localized d orbitals in a narrow energy window.

The choice of the atomic orbitals gives a good guiding
function, however, the resultant CWFs may not recover the
symmetry of CWFs respecting the bond direction to the neigh-
boring atoms unlike hybrid atomic orbitals due to the closest
property of CWFs. In this case, it would be better to use
the hybrid atomic orbitals rather than the atomic orbitals as
explained below. Let us introduce a projection operator for
the occupied space by

P̂ = 1

NBC

∑
kμ

|φkμ〉 f (εkμ)〈φkμ|, (20)

where f is the Fermi-Dirac function. Considering that {χ}
are a set of nonorthogonal basis set [37], where the overlap
integral is denoted by sRiα,R′ jβ ≡ 〈χRiα|χR′ jβ〉, the density
matrix is calculated with the projection operator by

ρRiα,R′ jβ =
∑
kμ

〈χ̃Riα|P̂|χ̃R′ jβ〉,

= 1

NBC

∑
kμ

eik·(R−R′ ) f (εkμ)ckμ,iαc∗
kμ, jβ, (21)

where χ̃ is the dual orbital defined by

|χ̃Riα〉 =
∑
R′ jβ

|χR′ jβ〉s−1
R′ jβ,Riα (22)

holding the following orthonormality:

〈χRiα|χ̃R′ jβ〉 = 〈χ̃Riα|χR′ jβ〉 = δRR′δi jδαβ. (23)

By setting R = R′ = 0 and i = j in Eq. (21), and diagonaliz-
ing the diagonal block element consisting of ρ0iα,0iβ , which is
associated with selected atomic orbitals on the atomic site i,
we obtain the hybrid atomic orbitals respecting the symmetry
of the bond direction to the neighboring atoms. We employ the
hybrid atomic orbitals as the localized functions {Q} in our
implementation. When the same atomic orbitals are chosen
to form the diagonal block element as for the case of atomic
orbitals {Q}, the resultant CWFs span the same subspace in
the Hilbert space.

For some systems the electronic structures can be rather
easily understood by employing MOs as building blocks. A
molecular crystal is such a case, where the eigenstates near
the chemical potential can be approximately constructed by
a linear combination of the MOs of constituting molecules.
Another example is the bond in molecules and bulks. The
bond between two atoms embedded in the system might be
analyzed by MOs associated with the two atoms. Here we
show how embedded MOs in molecules and bulks can be cal-
culated in a simple procedure. Let us start by noting that using
Eq. (20) and assuming that the Bloch function is expressed by
Eq. (19) the total number of electrons for a spin degenerate
case is given by [37]

Nele = 2tr[P̂],= 2
∑
Riα

〈χ̃Riα|P̂|χRiα〉, (24)
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In the second line of Eq. (24) we used the following identity
operator:

Î =
∑
Riα

|χRiα〉〈χ̃Riα| =
∑
Riα

|χ̃Riα〉〈χRiα|. (25)

Since Nele = NBCN (0)
ele with N (0)

ele = 2
∑

iα〈χ̃0iα|P̂|χ0iα〉, it is
enough to consider N (0)

ele . We utilize the formula for N (0)
ele to

calculate embedded MOs in molecules and bulks, and rewrite
it the sum of partial traces as

N (0)
ele = 2

∑
g

trg[(χ̃0g|P̂|χ0g)] = 2
∑

g

trg[�g], (26)

where g is the index of group including PAOs on grouped
atoms, e.g., a set of PAOs on a molecule. The notation of |χ0g)
stands for a subset of PAOs as

|χ0g) = (· · · , |χ0i1〉, |χ0i2〉, · · · , ), (27)

where PAOs on all the atoms in the group g are included in
the subset. The notation of |χ̃0g) is the counterpart for the dual
orbitals. Using the identity operator of Eq. (25), �g in Eq. (26)
is given by

�g =
∑
Rg′

ρ0g,Rg′sRg′,0g (28)

with definition of block elements:

ρRg,R′g′ = (χ̃Rg|P̂|χ̃R′g′ ), (29)

sRg,R′g′ = (χRg|χR′g′ ). (30)

We now introduce the embedded MOs orbitals in molecules
and bulks by a right-singular vectors of �g [38]. Since the
elements of �g are real in case of the collinear DFT, the
right-singular vectors can be obtained with real components.
However, the SVD of �g tends to produce the right-singular
vectors with complex components, which results in the com-
plex CWFs making analysis complicated. To obtain the real
right-singular vectors, we perform the eigendecomposition of
�†

g�g as

�†
g�g = Yg�

2
gY

†
g , (31)

where �2
g is the diagonal matrix consisting of the eigenvalues

of �†
g�g, and Yg is a unitary matrix consisting of the corre-

sponding eigenvectors {yg,ν}. By noting that the SVD of �g

is given by Zg�gY †
g , we see that the right-singular vectors

Yg can be obtained by diagonalizing �†
g�g as Yg. The square

roots of the eigenvalues of �†
g�g are singular values of �g,

and can be approximately regarded as the occupation of the
corresponding eigenvector yg,ν . If �g is a real matrix, then Yg

obtained by the diagonalization of �†
g�g is guaranteed to be a

real unitary matrix. We further normalize the eigenvector yg,ν

by considering the overlap integrals of Eq. (30) as

|ȳg,ν〉 = |yg,ν〉√〈yg,ν |s0g,0g|yg,ν〉
, (32)

and calculate an expectation value of the KS Hamiltonian ĤKS

with ȳg,ν as

εg,ν = 〈ȳg,ν |ĤKS|ȳg,ν〉. (33)

After {ȳg,ν} are ordered based on the expectation values,
we employ selected ones among {ȳg,ν}, e.g., ones near the
chemical potential, as the guiding functions {Q} in Eq. (3)
by monitoring the expectation values and the corresponding
singular values. They are what we call embedded MOs in
molecules and bulks. The reason why the expectation val-
ues are used to select the embedded MOs in addition to the
singular values is that the singular values are found to be
almost similar to each other as long as they are associated with
occupied states. As demonstrated in Sec. IV, {ȳ} work as the
good guiding functions to capture the electronic structure of a
molecular crystal.

IV. NUMERICAL RESULTS

A. Wannier interpolated bands

We present five numerical examples to demonstrate the
broad applicability of the proposed method across various
systems. In addition, a series of benchmark calculations for 30
systems are shown as supplementary information on a website
[39]. In Figs. 2(a) and 2(b), the interpolated bands of Si in the
diamond structure, calculated by the TB Hamiltonian derived
from CWFs, are compared with those by the conventional cal-
culation. For comparison, the result with the projection-only
WFs is also shown in Fig. 2(c), calculated by the projection
method in Ref. [8]. The hybrid atomic orbitals consisting of
valence minimal orbitals, which are one s and a set of px,
py, and pz orbitals per Si, were used as the guiding functions
{Q}. For the window function of Eq. (4) we use −15.0 and
0.0, relative to the chemical potential, in eV for ε0 and ε1,
respectively, which covers the energy range of valence bands.
On the other hand, two kBT of 0.01 and 3.0 eV were used
to check how conduction bands are reproduced depending on
the effect of smearing. As clearly seen, the two cases well
reproduce the valence bands, and the conduction bands are
also reproduced well in the case (b) of kBT = 3.0 eV. We also
note that the interpolated bands by the projection-only WFs
reproduce well the reference as shown in Fig. 2(c). Evaluating
the DM function per CWF using Eq. (14), we obtain values of
0.571 and 0.444 for kBT of 0.01 and 3.0 eV, respectively. For
kBT = 0.01 eV, the first four singular values at each k point
are close to 1, while the remaining four approach δ(= 10−12).
Conversely, for kBT = 3.0 eV, the eight singular values at
each k point distribute ranging from 1.2 to 0.1. These dif-
ferences in the distribution of singular values explain why
the value of the DM function for kBT = 0.01 eV is larger
than that for kBT = 3.0 eV. One of the obtained CWFs is
shown in Fig. 2(d), which represents a p-like CWF. Although
the proposed method does not impose the localization of
WFs, the decaying property of TB parameters t exhibits a
subexponential behavior as shown in Fig. 2(e). In case of
kBT = 0.01 eV, the conduction bands are treated less impor-
tantly due to heavily weighting to the valence bands, resulting
in the poor reproduction of the conduction bands. At first
glance, one may consider that this is an undesirable feature in
such a treatment. However, the feature enables us to generate
the minimal atomic-like orthogonal orbitals, which well span
the subspace by the valence bands, and to calculate an ef-
fective charge allocated to each atom using the minimal
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FIG. 2. Interpolated bands (red circles) of silicon in the diamond
structure, calculated by the TB Hamiltonian derived from CWFs with
(a) kBT = 0.01 and (b) 3.0 eV in the window function of Eq. (4),
respectively. ε0 and ε1 relative to the chemical potential were set to
be −15.0 and 0.0 eV, respectively. The solid line is the original one
directly calculated by the conventional scheme. The result with the
projection-only WFs is shown in (c), calculated by the projection
method in Ref. [8] with the outer window (−14.0 to 11.0 eV) and
the inner window (−14.0 to 5.0 eV). The number of k points for the
Brillouin zone sampling was 13 × 13 × 13. The experimental lattice
constant of 5.43 Å was used. The values of the DM function per CWF
are 0.571 and 0.444 for (a) and (b), respectively. (d) A CWF in the
case (b), where isovalues of ±0.04 (orange: 0.04, blue: −0.04) were
used for drawing the isosurfaces using OpenMX Viewer [40]. The
same isovalues were used for the cases of Figs. 3(d), 4(c) and 4(d).
(e) TB parameters t (eV) for the case (a) as a function of distance.

atomic-like orthogonal orbitals in an unbiased way. We will
demonstrate the calculation of the effective atomic charges
and stress the usefulness of the method later.

The disentanglement of bands in metals is demonstrated
for Cu in the fcc structure as shown in Figs. 3(a) and 3(b).
For comparison, the result with the projection-only WFs is
also shown in Fig. 3(c). By selecting the parameters ε0 and
ε1 so that the 3d bands are included, and using only five d
orbitals as the guiding functions {Q}, the five d bands are
reproduced as shown in Fig. 3(a). We see that the 3d bands

FIG. 3. Interpolated bands (red circles) of copper in the fcc
structure, calculated by the TB Hamiltonian derived from CWFs
with (a) ε0 = −5.5, ε1 = −1.0 eV, kBT = 1.0 eV, and hybrid 3d
orbitals as {Q}, and (b) ε0 = −11.0, ε1 = 24.0 eV, kBT = 3.0 eV,
and hybrid 3d , 4s, 4p orbitals as {Q}. The solid line is the original
one directly calculated by the conventional scheme. The result with
the projection-only WFs calculated with the same guiding functions
in (b) is shown in (c), for which the projection method in Ref. [8]
was used with the outer window (−10.0 to 0.0 eV) and the inner
window (−4.0 to −2.0 eV). The number of k points for the Brillouin
zone sampling was 21 × 21 × 21. The experimental lattice constant
of 3.61 Å was used. The values of the DM function per CWF are
0.081 and 0.211 for (a) and (b), respectively. (d) a CWF in the case
(a). (e) TB parameters t (eV) for the case (a) as a function of distance.

are properly disentangled from the dispersive 4s band, and
one of the obtained CWFs preserves the shape of dz2 orbital
as shown in Fig. 3(d) in accordance with the subexponential
decaying property of the TB parameters as shown in Fig. 3(e).
When 3d , 4s, and 4p orbitals are used as the guiding functions
{Q}, a broad range of bands are reproduced as shown in Fig. 3
(b). Since our PP of Cu includes 3s, 3p, 3d , and 4s states,
the original band structure has the deep 3s and 3p bands. We
set the parameters in the window function so as to discard
the 3s and 3p bands, and use the 3d , 4s, and 4p orbitals, not
3s- and 3p orbitals, as the guiding functions {Q}. So, the 3s
and 3p bands are not included in the interpolated bands (not
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FIG. 4. Interpolated bands, red lines in (a) and red circles in
(b), of TTF-TCNQ, calculated by the TB Hamiltonian derived from
CWFs with (a) ε0 = −22.0 and ε1 = 1.0 eV relative to the chemical
potential, kBT = 2.0 eV, and hybrid atomic valence orbitals as {Q},
and (b) ε0 = −1.0 and ε1 = 1.0 eV relative to the chemical potential,
kBT = 0.01 eV, and the 26th MO and the 37th MO for TTF and
TCNQ as {Q}. The solid line is the original one directly calculated
by the conventional scheme. The number of k points for the Brillouin
zone sampling was 5 × 19 × 3. An experimental crystal structure
was used [41]. The values of the DM function per CWF are 0.441 and
0.022 for (a) and (b), respectively. CWFs for (c) TTF in TTF-TCNQ,
and (d) TCNQ in TTF-TCNQ, obtained from the case (b).

shown). The examples show that the CWFs can be flexibly
and easily constructed in accordance with the purpose of
study without numerical difficulties. On the other hand, the
interpolated bands by the projection-only WFs demonstrate
good agreement with the reference, as shown in Fig. 3(c).
This agreement is achieved through the minimization of �I,
which is originally called gauge invariant part of the spread
function �, as discussed in Ref. [8]. Without minimizing �I,
however, the bands obtained by the projection-only WFs lose
smoothness and exhibit slight deviations from the reference
(not shown) as discussed in Ref. [3]. Our method achieves
good agreement with the reference without any iterative cal-
culations, as illustrated in Fig. 3(a). This remarkable property
can be attributed to the use of the smoothly varying window
function of Eq. (4).

The interpolated bands for a molecular crystal, consist-
ing of tetrathiafulvalene (TTF) and tetracyanoquinodimethane
(TCNQ), are shown in Figs. 4(a) and 4(b). By employing
hybrid atomic orbitals as the guiding functions {Q}, the wide
range of bands are reproduced as shown in Fig. 4(a). On the
other hand, as shown in Fig. 4(b), only four bands near the

TABLE II. Expectation values ε (eV) of the KS Hamiltonian
calculated by Eq. (33), which is relative to the chemical potential,
and singular values ω of �g for embedded MOs in the TTF-TCNQ
molecular crystal.

TTF TCNQ

Index ε ω Index ε ω

23 −0.069 1.359 34 0.135 1.082
24 0.719 1.346 35 0.375 1.329
25 0.761 1.449 36 0.477 1.336
26 3.408 0.864 37 4.928 0.535
27 5.947 0.047 38 9.389 0.036
28 6.197 0.047 39 9.795 0.019

chemical potential are reproduced using the embedded MOs
in the bulk as the guiding functions {Q}. The MOs were cal-
culated by grouping the TTF and TCNQ molecules separately
as explained in Sec. III B. The expectation values calculated
by Eq. (33) and the singular values ω of �g are listed in
Table II. It can be seen that the singular values largely change
from ω26 to ω27 and from ω37 to ω38 for TTF and TCNQ,
respectively. So, the 26th MO and the 37th MO for TTF and
TCNQ, respectively, were used as the guiding functions {Q}.
Since there are two TTF molecules and two TCNQ molecules
in the unit cell, we have the four embedded MOs as {Q},
resulting in the four bands. In Figs. 4(c) and 4(d) two of the
resultant CWFs are shown, which localize in TTF and TCNQ
molecules, respectively, as expected. The value of the DM
function per CWF is found to be 0.022, which implies that
the guiding MOs are very close to the resultant CWFs. The
example demonstrates that the proposed method provides a
direct way to calculate CWFs for targeted bands in molecular
crystals.

We extend the proposed method to the noncollinear DFT
[42,43] with spin-orbit interaction (SOI) [32]. The KS or-
bitals are expressed by two-component spinor, and the SOI
is introduced by fully relativistic j-dependent PPs [28]. The
theoretical framework is readily extended to the noncollinear
DFT with the SOI without any difficulty. However, it should
be noted that the hybrid atomic orbitals and embedded MOs
in molecules and bulks as the guiding functions {Q} can be
complex functions in the case. In Figs. 5(a) and 5(b), we show
the Wannier interpolated bands of Bi2Se3 which is known to
be a topological insulator when the SOI is included in the
DFT calculation. For the cases without and with the SOI,
corresponding to Figs. 5(a) and 5(b), respectively, it is con-
firmed that the interpolated bands accurately reproduce the
original ones regardless of existence of the band inversion,
demonstrating a wide variety of applicability of the proposed
method.

Finally, we show results for GaAs in Figs. 6(a)–6(d) to
demonstrate how the window function of Eq. (4) with the
two temperature scheme plays a significant role in repro-
ducing the targeted bands. The interpolated bands calculated
with the projection-only WFs calculated by the projection
method in Ref. [8] reproduce well the reference ones as
shown in Fig. 6(a). When the four bands located just below
the chemical potential, which mainly consists of Ga-4s and
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FIG. 5. Interpolated bands (red circles) of Bi2Se3 (a) without and
(b) with the spin-orbit interaction, calculated by the TB Hamiltonian
derived from CWFs. The solid line is the original ones directly
calculated by the conventional scheme. ε0 = −6.0 and ε1 = 3.0 eV
relative to the chemical potential, kBT = 1.0 eV, and hybrid Bi 6p
orbitals and Se 4p orbitals as {Q}, were used in both the calcula-
tions. The number of k points for the Brillouin zone sampling was
7 × 7 × 7. An experimental crystal structure was used [44]. The
values of the DM function per CWF are 0.163 and 0.184 for (a) and
(b), respectively.

As-4p orbitals, are focused by discarding the other bands with
kBT0 = kBT1 = 0.001 eV, interpolated bands are obtained as
shown in Fig. 6(b). Other the other hand, including outer
bands with kBT0 = kBT1 = 1.0 eV leads to an erratic behavior
as shown in Fig. 6(c), where the CWFs attempt to repro-
duce the lower band located around −12 eV and low-lying
unoccupied bands depending on the k point, resulting in the
erratic behavior. Noting that the three bands in between −7
and 0 eV consists of mainly Ga-4s and As-4p orbitals and
the low-lying unoccupied bands are largely contributed by
Ga-4p orbitals, the band around −12 eV needs to be com-
pletely discarded and the low-lying unoccupied bands should
be partly included when Ga-4s, 4p, and As-4p orbitals are
used as the guiding functions. The result in Fig. 6(d) is
the case, where kBT0 = 0.001 and kBT1 = 1.0 eV were used.
We see that the interpolated bands fully reproduce the ref-
erence ones as expected, which clearly demonstrates the
usefulness of the two temperature scheme.

B. Effective atomic charges

From the construction, one can calculate CWFs closest to
(hybrid) valence atomic orbitals, while fully respecting the
occupied states. The feature of CWFs provides us a unique
way to evaluate effective atomic charges based on CWFs
being orthogonal atomic-like orbitals. Since the CWFs are a
set of orthonormal functions, the effective atomic charge κi of
atom i is easily calculated without arbitrariness as

κi = N (val)
i − 2

∑
p∈atom i

〈W0p|P̂|W0p〉,

= N (val)
i − 2

NBC

∑
p∈atom i

∑
k,μ

f (εkμ)u∗
kμ,pukμ,p, (34)

FIG. 6. Interpolated bands (red circles) of GaAs in the zinc
blende structure, calculated by the TB Hamiltonian derived from
(a) projection-only WFs calculated by the projection method in
Ref. [8] with the outer window (−10.0 to 12.0 eV) and the inner
window (−8.0 to 6.0 eV), CWFs with (b) kBT0 = kBT1 = 0.001 eV,
(c) kBT0 = kBT1 = 1.0 eV, and (d) kBT0 = 0.001 and kBT1 = 1.0 eV,
respectively. For (b), (c), and (d), ε0 and ε1 relative to the chemical
potential were set to be −9.0 and 0.0 eV, respectively. Ga-4s, 4p, and
As-4p orbitals were used as the guiding functions in all the cases. The
solid line is the original one directly calculated by the conventional
scheme. The number of k points for the Brillouin zone sampling was
13 × 13 × 13. The experimental lattice constant of 5.65 Å was used.
The value of the DM function per CWF is 0.578 in the case (d).

where the factor of 2 is due to the spin degeneracy, P̂ is
the projection operator defined by Eq. (20), and N (val)

i is the
number of valence electrons in the PP of atom i. Though
the summation over orbitals p belonging to atom i is taken
into account in Eq. (34), one can analyze the orbital resolved
charges as well. Table III shows effective atomic charges in
a HCN molecule and the NaCl bulk, calculated by Eq. (34)
together with effective charges calculated by MLWFs [3,7],
the projection-only WFs (POWF) [8], the Mulliken popula-
tion analysis [45], and the Bader analysis [46,47]. Both the
systems are known to be notorious cases because of the diffi-
culty in calculating the effective charges [20]. We see that the
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TABLE III. Effective atomic charges in a HCN molecule and the NaCl bulk, calculated by the proposed method (CWF), the MLWFs
(MLWF), the projection-only WFs (POWF) [8], the Mulliken population analysis (MP), and the Bader analysis (Bader) with a variety of basis
functions, where A represents the constituting atoms. Valence atomic orbitals were used as the guiding functions {Q}. For the window function,
ε0 = −55.0 and ε1 = 0.0 eV for HCN and ε0 = −35.0 and ε1 = 0.0 eV for NaCl, relative to the chemical potential, and kBT = 0.1 eV are
used. The same number of MLWFs and POWFs as the cases of CWF were generated starting from the same valence atomic orbitals as the
initial guess, where the outer and inner windows, relative to the chemical potential, were set to be −22.0 to 14.0 (−30.0 to 37.0) and −22.0 to
0.0 (−29.0 to 0.0) eV for HCN (NaCl), respectively. The number of k points for the Brillouin zone sampling is 9 × 9 × 9 for the NaCl bulk
with the lattice constant of 5.63 Å.

HCN CWF MLWF POWF MP Bader
Basis H C N H C N H C N H C N H C N

A6.0-s1p1 0.077 −0.052 −0.025 0.665 0.303 −0.969 0.262 −0.215 −0.047 0.384 −0.164 −0.221 1.000 1.746 −2.746
A6.0-s2p2 0.069 0.003 −0.073 0.793 0.067 −0.860 0.312 −0.009 −0.303 −0.070 0.321 −0.252 0.201 2.439 −2.639
A6.0-s2p2d1 0.066 0.009 −0.076 0.793 0.102 −0.907 0.307 0.010 −0.317 −0.008 0.393 −0.385 0.183 2.523 −2.706
A6.0-s3p3d2 0.066 0.008 −0.074 0.699 0.343 −1.042 0.314 0.001 −0.315 0.110 0.298 −0.408 0.182 2.539 −2.721
A6.0-s3p3d2f2 0.066 0.008 −0.074 0.721 0.344 −1.065 0.308 0.007 −0.315 0.167 0.297 −0.464 0.182 2.532 −2.715

NaCl CWF MLWF POWF MP Bader

Basis Na Cl Na Cl Na Cl Na Cl Na Cl
A9.0-s2p1 0.391 −0.391 0.760 −0.760 0.627 −0.627 0.716 −0.716 0.858 −0.858
A9.0-s3p2 0.422 −0.422 0.628 −0.628 0.698 −0.698 0.595 −0.595 0.865 −0.865
A9.0-s3p3d2 0.421 −0.421 0.876 −0.876 0.697 −0.697 0.158 −0.158 0.853 −0.853
A9.0-s3p3d2f2 0.421 −0.421 0.877 −0.877 0.697 −0.697 −0.062 0.062 0.850 −0.850

effective charges by the CWFs quickly converge as a function
of basis functions, while those by the Mulliken population are
highly dependent on the choice of the basis function [48].
The nonionic nature of the CN bond in the HCN molecule,
obtained by the CWF method, is consistent with the picture
given by the IAO method [20]. On the other hand, it turns out
that the effective charges calculated by MLWFs are relatively
sensitive to the choice of basis functions compared to the cases
of CWF, and exhibit large charge transfer in HCN and NaCl.
The resultant ionic CN bond in the MLWF method differs
from the picture derived by the IAO and CWF methods. The
overestimation of the charge transfer in the MLWF method
can be understood by comparing the WFs as shown in Fig. 7.
It is confirmed that the CWFs (a)–(i) well preserve the shape
of the atomic orbitals as expected. By contrast, the MLWFs
(j), (k), (l), (o), and (p) deform significantly from the shape
of atomic orbitals as a result of the maximally localization of
the spread function. The MLWFs (j) and (k), originating from
H-1s and C-2s orbitals, respectively, reduces the occupations
by the deformation, while the occupations of the MLWFs (l),
(o), and (p) increase due to the deformation. The σ bonds
between H-C and C-N are contributed by the MLWFs (l)
and (p), respectively, which originate from C-2px and N-2px

orbitals, respectively. Thus, the MLWF (j), originating from
H-1s orbital, does not largely contribute to the σ bonds be-
tween H-C, reducing the population on the H atom. Similarly,
the population on the N atom increases, since the σ bond
between C-N is formed by the MLWF (p), originating from
N-2px. It is apparent that attributing the occupation of the
MLWFs (l) and (p) to a single atom is not justified due to
the fact that they are bond centered. This implies that MLWFs
should not be used to decompose electron population to each
atom as demonstrated for the HCN molecule. On the other
hand, CWFs are closest to atomic orbitals when the atomic
orbitals are used as the guiding functions, and the population
calculated by the CWFs can be naturally attributed to each

atom, which allows us to calculate the atomic populations in
a physically convincing manner.

For comparison, we also calculated the effective charges
using the POWF [8] and found that the obtained values are
relatively sensitive to the choice of basis functions and lie
between the results obtained by the CWF and MLWF meth-
ods. Here, we analyze why the results from the POWF deviate
from those by the CWF even when the inner window scheme
[8] was used to focus on the valence states. In the HCN
molecule, the projection of the s orbital for hydrogen and
the s, px, py, and pz orbitals for carbon and nitrogen results
in nine Wannier functions. Since there are five occupied or-
bitals, applying the inner window scheme to the energy range
of these orbitals first selects a subspace spanned by them.
Subsequently, four vectors are chosen from the subspace con-
sisting of unoccupied orbitals so that they can be orthogonal
to the former subspace and have maximal overlap with the
subspace obtained by projection of guiding functions onto
a subspace spanned by states included in the outer window.
Once the latter subspace is selected, each subspace is given
equal weight in constructing the projection matrix. As a result,
the nine Wannier functions generated are not specifically de-
signed to primarily accommodate the occupied orbitals. This
statement can be verified using the CWF method: By setting
the window function with ε0 = −22.0 eV, ε1 = 8.0 eV, and
kBT0 = kBT1 = 0.1 eV in the CWF method, and calculating
the effective charges, contributions from low-lying unoccu-
pied orbitals are included equally. We confirmed that this
calculation results in effective charges nearly equivalent to
those obtained by the projection-only method (not shown). It
is evident that even when using the inner window scheme with
the projection-only approach, properly computing effective
charges remains a challenge. To calculate the effective charges
assigned to atoms, it is reasonable to use atomic orbitals as
projection orbitals. Typically, the number of atomic orbitals
used exceeds the number of occupied orbitals, leading to
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FIG. 7. Wannier functions of a HCN molecule calculated by (a)–
(i) the CWF and (j)–(r) the MLWF methods. The number that follows
is the occupation number considering the degree of spin degeneracy.
The white, silver, and blue spheres correspond to hydrogen, carbon,
and nitrogen atoms, respectively. In all the cases, isovalues of ±0.08
(orange: 0.08, blue: −0.08) are used for drawing the isosurfaces
using OpenMX Viewer [40]. The computational conditions are the
same as for the cases of A6.0-s3p3d2f2 in Table III.

similar challenges as observed in the case of NaCl. A simple
solution to resolve this problem is to introduce a smoothly
varying window function even in the inner window scheme
when constructing the projection matrix. In fact, we confirmed
that introducing a smoothly varying window function in the
inner window scheme almost reproduces those by the CWF
method (not shown). However, one should note that the use of
the smoothly varying window function in the CWF is a much
simpler method.

The Bader analysis shows erratic charge transfer in the CN
bond, implying the limited applicability of the Bader analysis
based on a real-space decomposition to the triple bond [20],
while the effective atomic charges in NaCl are similar to those
by the MLWF method.

It is considered from the comparison that the effective
atomic charges obtained from the CWFs could serve as a
valuable tool for analyzing electronic structures in a manner

related to the approach discussed in Ref. [20]. Further investi-
gation in this direction will be conducted in future studies.

V. CONCLUSIONS

We presented a noniterative method to calculate the CWFs
to a given set of localized guiding functions such as atomic
orbitals, hybrid atomic orbitals, and MOs. We defined the
DM function F by the sum of the squared distance between
the projection functions L and Wannier functions W in the
Hilbert space, and considered minimizing the DM function.
It was shown that the minimization of the DM function is
achieved by the polar decomposition of the projection matrix
A with a window function via the SVD in a noniterative
manner. The CWFs can be uniquely constructed as long as
the projection matrix A is positive definite. It was also shown
that the method is free from subtle choice of the gauge. The
disentanglement of bands is naturally taken into account by
introducing a smoothly varying window function, and includ-
ing Nband Bloch functions to generate NCWF CWFs, where
NCWF � Nband. Even for isolated bands, the method always
performs the disentanglement of bands without any iterative
calculation and difficulty. The advantage of the smoothly
varying window function over the inner window scheme [8]
was clearly demonstrated in the disentanglement of d bands
in copper and in the calculations of the effective charges.
Also, it is noted that the implementation of the method is rel-
atively simple, which requires mainly matrix-matrix product
and SVD. We have implemented the proposed method into
the OpenMX code, which is based on the DFT, numerical
PAOs, and norm-conserving PPs, and introduced three types
of guiding functions, i.e., atomic orbitals, hybrid atomic or-
bitals, and embedded MOs in molecules and bulks. The first
two are easily employed from the PAOs. For the last one, we
developed a method to calculate embedded MOs in molecules
and bulks, which focuses on a partial trace formula of the
projection operator for the occupied space and applies SVD
to the partial matrix for the projection operator. The interpo-
lated bands by TB models derived from the CWFs reproduce
well the targeted conventional bands of a wide variety of
systems including Si, Cu, the TTF-TCNQ molecular crys-
tal, and a topological insulator of Bi2Se3. These successful
reproduction of targeted bands clearly demonstrates a wide
variety of applicability of the proposed method. We further
show the usefulness of the proposed method in calculating
effective atomic charges, implying that the CWFs closest to
atomic orbitals can be used as a measure to analyze electronic
structures from one system to the others. Thus, we conclude
that the proposed method is an alternative way in efficiently
calculating WFs, and the concept of CWFs will provide a ba-
sis for development of novel methods of analyzing electronic
structures and calculating physical properties [49,50].
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APPENDIX: THE UPPER BOUND OF THE DIAGONAL
ELEMENTS OF THE MATRIX D

A proof for the upper bound of the diagonal elements of the
matrix D is given in the Appendix. Note that UV and BV in
Eq. (11) are partial unitary matrices in size of Nband × NCWF.
Since D is Hermitian, its eigenvalues are real. Let λ be an
eigenvalue of D and x be the corresponding eigenvector. Then,
the following equation holds:

1
2 (V †U †BV + V †B†UV )|x〉 = λ|x〉. (A1)

Defining |y〉 = UV |x〉 and |z〉 = BV |x〉, and operating 〈x|
from the left side of Eq. (A1), we have

〈y|z〉 + 〈z|y〉 = 2λ〈x|x〉. (A2)

Noting 〈y|z〉 + 〈z|y〉 � 2|〈y|z〉|, and using the Cauchy-
Schwarz inequality |〈y|z〉| � √〈y|y〉〈z|z〉, we obtain

〈y|z〉 + 〈z|y〉 � 2
√

〈y|y〉〈z|z〉. (A3)

Since 〈y|y〉 = 〈z|z〉 = 〈x|x〉, combining Eq. (A2) and Eq. (A3)
results in

λ〈x|x〉 � 〈x|x〉. (A4)

Considering 〈x|x〉 �= 0, the upper bound of the eigenvalues of
D is found to be

λ � 1. (A5)

Noting that the matrix D can be written by x and λ as

D =
∑

ν

|xν〉λν〈xν |, (A6)

the diagonal elements dnn of the matrix D is given by

dnn =
∑

ν

|〈n|xν〉|2λν, (A7)

where 〈n|xν〉 is the nth element in the vector xν . Since the
upper bound of λ is unity, and {x} forms a unitary matrix, we
obtain the upper bound of the diagonal elements of the matrix
D as

dnn � 1. (A8)
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